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Abstract. Snow density is a crucial parameter for snow and sea ice modelling at the physical process level. The seasonal 

evolution of surface (top 3 cm) and bulk (entire layer) snow densities observed during MOSAiC expedition were investigated 

and used to access several snow density schemes. A numerical snow and sea ice model was applied to simulate the impact of 

snow density on the thermal regime of sea ice during the period when snow was dry. The constant snow densities of 348 15 

kg/m³, 308 kg/m³ and 487 kg/m³ were derived from linear regression of snow water equivalent (SWE) versus snow depth, 

using samples collected during the entire MOSAiC period, the winter-spring period (October–May), and summer-autumn 

period (June- September), respectively. The examined snow density schemes produced mean snow densities consistent with 

MOSAiC observations; however, none of the schemes adequately captured the observed temporal variability. The modelled 

mean surface temperature and ice thickness were linearly related to the snow density, whereas the modelled mean in-snow and 20 

in-ice temperatures had linear inverse relationships with the snow density. The impacts of time-dependent snow density on 

snow and ice thermodynamic regimes were stronger than in the model runs using constant snow density.  Model sensitivity 

experiments revealed contrasting responses of the snow and ice system to changes in snow density and precipitation. Increased 

snow density decreased snow and ice temperatures, promoting ice growth, while increased precipitation led to warmer snow 

and ice temperatures and reduced ice thickness. 25 

1 Introduction 

Snow on top of sea ice is an important component of the marine Arctic climate system. First, snow is a strong reflector of solar 

radiation, with a surface albedo much higher than that for bare ice (Perovich and Polashenski, 2012). This keeps the surface 

temperatures lower in spring and autumn and reduces the melt in late spring and early summer. Second, snow is a good 

insulator, having a heat conductivity of only approximately 10-20 % of that of sea ice (Sturm et al., 2002, Macfarlane et al., 30 

2024). Hence, in winter the heat flux from the relatively warm ocean to the cold atmosphere is much smaller when sea ice is 
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covered by snow resulting in a reduction in the ice growth rate (Merkouriardi et al., 2017). Third, snow has a positive 

contribution to the sea-ice mass balance via snow-to-ice transformation to increase the ice thickness. This occurs when the ice 

surface is flooded under a heavy snowpack and slush freezes to form snow ice (Provost et al., 2017) or when melt water or 

rain percolates to the snow-ice interface and refreezes there to form superimposed ice (Cheng et al., 2006). For multi-year sea 35 

ice in the Arctic, a surface scattering layer (SSL) may exist on top of sea ice during and after summer (Macfarlane et al., 2023b; 

Smith et al., 2022). The origin of the SSL is largely ice, although it is visually like a snow layer. It has a surface albedo greater 

than that of bare ice but less than that of snow.  

Snow density is an important factor in all of the above. Snow density affects the thermal properties of the snowpack, as for 

instance new, dry, low-density snow has a much lower heat conductivity than wet, high-density snow (Macfarlane et al., 40 

2023c). Snow density determines the mass of a snowpack at a certain depth and accordingly affects the snow-ice formation 

ice by submerging the sea ice surface and causing flooding. Furthermore, snow density influences the formation of 

superimposed ice by affecting the percolation of meltwater to the snow-ice interface. Additionally, the lower the snow density, 

the weaker the wind required for erosion (He and Ohara, 2017). Lighter snow tends to be more easily subjected to drifting and 

blowing, which enhances sublimation (Sigmund et al., 2022) and can act as a source of fine-mode salt aerosols, serving as 45 

cloud condensation nuclei (Gong et al., 2023). In the satellite retrieval of sea ice thickness, snow density is critically important 

(Kern et al., 2015). Vertical snow density gradients and/or volume scattering in the snow influence the radar signal: a 30% 

uncertainty in snow density can translate into a roughly 0.3 m uncertainty in the satellite-retrieved sea ice thickness (Kern et 

al., 2015).  

After snowfall, snow density begins to evolve due to snow metamorphism, which results in stratigraphic layering, compaction, 50 

and densification (Bormann et al., 2013; Helfricht et al., 2018; Judson and Doesken, 2000). The factors controlling snow 

metamorphosis can be divided into dynamic and thermodynamic factors. The dynamic factors are due to wind and snowfall. 

Wind generates pressure forces acting on snow grains, which result in the breaking of fine structures and rounding of the grains 

(King et al., 2020). This increases snow density, as the rounded grains are packed more compactly. Snowfall typically reduces 

the bulk density of the snowpack, as the newly fallen snow usually has a lower density than older snow (Sturm and Holmgren, 55 

1988). The major challenge in quantifying the role of snowfall in snow metamorphism, snow depth and ice mass balance 

beneath the snow layer is that the temporal and spatial variations of snowfall are often poorly understood. Measurements of 

the total local seasonal snowfall tend to differ from each other, depending on the instrument used (Matrosov et al., 2022). 

Thermodynamic metamorphosis is caused by densification due to melting and refreezing as well as by sublimation, transport 

of water vapor, and condensation (Jafari et al., 2020; Nicolaus et al., 2022). The water vapor transport may be generated by a 60 

thermal gradient through the snowpack or in the range of individual snow grains. 

Even if the microscale physics of the factors controlling the snow density is reasonably well understood (Keenan, et al., 2021), 

major challenges remain in the presentation of the processes in climate models. Those can only resolve bulk properties of the 

snowpack, such as its depth and temperature. Various snow-density parameterizations have already been developed (e.g., 

Essery et al., 2013, Keenan, et al., 2021). In most climate models involved in the Snow Model Intercomparison Project 65 
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(SNOW-MIP), snow density is either constant or depends on mechanical compaction and snow age (Menard et al., 2021). 

However, limited and sparse data availability from the central Arctic has hindered a comprehensive assessment of the snow 

density on sea ice and its dependence on variables resolved by climate models. 

In this study, we investigate the seasonal evolution of snow density, as observed during the Multidisciplinary drifting 

Observatory for the Study of Arctic Climate (MOSAiC) expedition (Shupe et al., 2020). We address snow density for the 70 

surface layer (top 3 cm) and for the bulk snowpack. Our objectives are to find out (1) how snow density is affected by air 

temperature over the annual cycle, (2) how snow density is affected by wind during the winter-spring period, (3) how the 

simulated thermal evolution of snow and ice varies depending on the applied snow density scheme, and (4) how snowfall 

impacts the thermal evolution of the previously deposited snow and underlying ice.   

2 Data and methods 75 

The MOSAiC expedition to the central Arctic started in October 2019 and lasted until September 2020. The MOSAiC ice 

camp (RV Polarstern) drift started from the marginal ice zone (MIZ) in the eastern Amundsen Basin and ended in the Fram 

Strait (Fig. 1). The expedition was divided into five legs. Legs 1 to 3 were operated along a continuous ice camp (central 

observatory 1, CO1) between October 2019 and mid-May 2020. Leg 4 between June and August 2020 (central observatory 2, 

CO2). Leg 5 was set-up after a complete relocation of RV Polarstern back up to the central high-Arctic (central observatory 3, 80 

CO3). The complete drift trajectory can be seen in Fig. 1. 

 

 

Figure 1: The MOSAiC ice camp drift trajectory. CO represents the central observatory camp (a) Snow density along the time and 

latitude of the observations, and (b) snow density along the drift. The colored dots represent the observed mean bulk snow density 85 
using cylinder snow samplers (Macfarlane et al., 2023a). The color bar illustrates the density values in a) and b). 
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2.1 Weather data 

Meteorological parameters were measured at the Central Observatory Met City at approximately 500 m distance from RV 

Polarstern (Shupe et al., 2022). A 10-m-high weather mast was installed. We use 2-m air temperature and 10-m wind speed 

to investigate their impact on snow density since those are fundamental meteorological parameters affecting snow 90 

metamorphism (Sommerfeld and LaChapelle, 1970, Domine et al., 2007). For modelling, the relative humidity (calculated 

based on in-situ observed air temperature and dew-point temperature) as well as downward shortwave and longwave radiative 

fluxes were used. The radiative fluxes were measured by a pyranometer and a pyrgeometer (Cox et al. 2021). Precipitation is 

the major source of snow accumulation and one of the most important input variables for snow and ice modeling. Wagner et 

al. (2022) estimated a total snow precipitation between the end of October 2019 and the end of April 2020 of 98-114 mm, 95 

which is in a good agreement with the ERA5 reanalysis product. 

2.2 Snow data 

During MOSAiC, a comprehensive sea ice and snow observational program was set up (Nicolaus et al., 2022). Two traditional 

measurements were employed to measure snow density: classical box density cutters and cylinder snow samplers for snow 

water equivalent (SWE) measurement (Proksch et al., 2016; Macfarlane et al., 2023a). Snow pits were dug weekly at various 100 

locations on undeformed first-year ice, second-year ice, and places close to open leads and pressure ridges. At each site, 

multiple snow pits spaced about 1 m apart were dug. The MOSAiC ice floe became snow-free by late June - early July (Itkin 

and Liston, 2024) when the observations were interrupted due to logistic constraints. The snow-like surface scattering layer 

(SSL) observed over bare ice during the melting season was included among the snow observations. The details of the snow 

observations are presented by Macfarlane et al. (2021, 2023a). This study focuses on the temporal evolution of surface (top 3 105 

cm) and bulk snow (entire snow layer) densities. 

2.2.1 Surface snow density 

The surface snow density (ρsfc) data were collected at each snow pit site using a density cutter box (100 cm3). The ratio between 

the snow sample weight and the box volume yields snow density. In addition to recording density, the surface snow type at 

each sample was documented. During the measurement course, a variety of surface snow types, including new snow, rime, 110 

surface hoar, glazed snow, drifted snow, wet snow, visible dust, frost flowers, surface crust, SSL, jewel snow, and frozen snow 

were observed. Different type of snow exhibits distinct grain size and structure, moisture content, and hardness, leading to a 

unique density range. For example, fresh snow typically has a density of about 50-100 kg/m³, whereas the density of settled or 

wet snow can exceed 500 kg/m³ (Domine et al., 2007), and the density of SSL can be up to 700 kg/m³ (MacFarlane et al., 

2023).  Combining these types of snow within the surface layer would introduce substantial variability of surface snow density 115 

(Fierz et al., 2009; Pielmeier and Schneebeli, 2003). Different measurement techniques may cause different biases and 

uncertainties depending on the snow type. For instance, using a snow density cutter on fresh snow may result in less accurate 
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measurements than its application on settled snow due to the difficulty in sampling the very soft and fragile structure of fresh 

snow (Domine et al., 2008). In total, 209 surface snow density samples were collected during legs 1-5, with the majority of 

samples taken from undeformed sea ice. 120 

2.2.2 Bulk snow density 

The bulk snow density (ρb) can be derived by integrating the measured densities of the various snow layers. However, 

downscaling high-resolution measurements to coarser resolutions may introduce measurement error (Essery et al., 2013). For 

simplicity, we derived the bulk snow density based on snow depth and SWE measurements. Snow depth hs was measured 

manually at snow pit sites. SWE was measured using a cylindrical SWE sampler. We calculated the snow bulk density ρb using 125 

the equation ρb = (SWE × ρw)/hs, where ρw 𝑖𝑠 the density of water, assumed as 1000 kg/m3. The relationship between SWE 

(mm) and snow depth (m) for the entire MOSAiC period and the winter-spring period is illustrated in Fig. 2. The slopes of the 

regression lines represent the estimated temporal average snow densities: 348 kg/m³ for the entire MOSAiC period and 308 

kg/m³ for the winter-spring period. These values can be used as constant snow density for climate modelling. 

 130 

 

Figure 2: Scatterplot of SWE (mm) versus snow depth (m) from MOSAiC snow pit measurements over the entire MOSAiC period. 

Blue dots represent samples collected during the winter-spring period, while black dots denote samples from the summer-autumn 
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period. The slopes of the linear regression lines correspond to the bulk snow densities for the entire MOSAiC period (red), the 

winter-spring period (blue), and the summer-autumn period (black). 135 

2.3 Snow density parameterizations 

In climate models, snow density is either prescribed as a constant or parameterized as bulk values (McCreight and Small, 

2014). The parameterization of bulk snow density is often derived based on a large set of in situ snow density observations 

using multiple empirical regression techniques involving a set of proxy variables, such as air temperature, wind speed, snow 

depth, and age of the snow cover (Pistocchi, 2016; Mizukami and Perica, 2008). In this study, we assess the three bulk snow 140 

density parameterization schemes by Sturm et al. (2010), Bruland et al. (2015) and Szeitz and Moore (2023) (Table 1). The 

E4 scheme by Anderson (1976) calculates snow density taking the effect of temperature on snow compaction into account by 

applying a prognostic equation. This scheme has been applied in sea ice modelling (Cheng et al., 2008, Wang et al., 2015). 

However, all schemes were developed based on terrestrial snow data sets. 

Table 1: Bulk snow density parameterization schemes. 145 

Sources Snow density scheme 

Sturm et al. (2010)  

 

 

 

Parameters  

𝜌𝑏 =  𝜌0 + (𝜌𝑚 − 𝜌0) × [1 − exp(−𝑘1 × ℎ𝑠 − 𝑘2 × DOY)]                (E1) 

 𝑘1 = 1.0 × 10−3 and 𝑘2 = 3.8 × 10−3 in this scheme are the fitting parameters, ℎ𝑠 (cm) is 

snow depth, DOY is day-of-year, 𝜌0 (250 kg/m3) and 𝜌𝑚 (500 kg/m3) are fitting parameters 

representing the initial and maximum bulk density. 

Bruland et al. (2015) 

 

 

Parameters 

ρb = ρ0 + (ρm − ρ0) × [1 − exp(−𝑘1 × hs − 𝑘2 × z − 𝑘3 × 𝑇𝑑 − 𝑘4 × V∗)] (E2)                           

 𝑘1 = 5.03 × 10−3 ,  𝑘2 = 1.8 × 10−4 , 𝑘3 = 4.77 × 10−3 , 𝑘4 =   4.2 × 10−4 ;  ℎ𝑠  (cm) is 

snow depth,  𝑧  (m) is the elevation or the height above sea level of the location of the 

measurement; 𝑇𝑑 (°C-days) is accumulated positive degree-day;  𝑉∗ (m/s-days) is wind days 

when T < 0 ºC and wind speed V > 2 m/s. 

Szeitz and Moore 

(2023) 

 

 

Parameters  

𝜌𝑏 = 𝜌𝑜 + (𝜌𝑚 − 𝜌0) × (𝑘2 × DOY2 − exp(−𝑘1 × ℎ𝑠 − 𝑘3 × 𝑇𝑑 − 𝑘4 × 𝑇𝑚𝑖𝑛 − 𝑘5 × 𝑃))                                                                                                    

（E3） 

 𝑘1 = 2.26 × 10−1, 𝑘2 = 2.29 × 10−5, 𝑘3 = 1.11 × 10−2, 𝑘4 = 3.23 × 10−4, 𝑘5 = 1.96 ×

10−2, ℎ𝑠 (cm) is snow depth; 𝑇𝑑 (°C-days) is accumulated positive degree-day; 𝑇𝑚𝑖𝑛 (°C) is 

minimum air temperature, 𝑃 (mm) is daily total precipitation. 
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Anderson (1976) 1

𝜌𝑏
×

𝜕𝜌𝑏

𝜕𝑡
 =  𝐶1 × exp[−𝑑 × (𝑇𝑓 − 𝑇)] × 𝑊𝑆 × exp(−𝐶2 × 𝜌𝑏)                (E4) 

Parameters  𝑇𝑓  is the freezing temperature (273.15K); T is the air temperature(K); 𝑊𝑠 (m) is total snow 

water equivalent; 𝐶1= 5 cm-1hr-1; 𝐶2 =21 m³ Mg⁻¹ and d=0.08K-1. 

2.4 Snow and ice model 

A single column high-resolution thermodynamic snow and ice model (HIGHTSI) is used to simulate the impact of snow 

density on the thermal regime and mass balance of snow and ice. HIGHTSI computes the energy and mass balances at the 

snow surface, at the snow/ice interface, within the snow and ice layers, and at the ice bottom (Launiainen and Cheng, 1998). 

The snow-to-ice transformation is calculated in terms of ice mass balance. The refreezing of slush to snow ice due to ice 150 

surface flooding and the refreezing of melted snow to superimposed at the snow–ice interface is considered in the model 

(Cheng, et al., 2003). The penetration of solar radiation sometimes results in internal melting within the snow and ice (Zhao et 

al. 2022). The model can be used to track the thermal regime of snow and ice along ice drift trajectories (Cheng et al., 2008, 

2021, Merkouriadi, et al., 2020). HIGHTSI uses time-dependent snow density (scheme E4) and snow heat conductivity (Sturm 

et al. 1997). The thermal properties (density, specific heat, and thermal conductivity) of sea ice are parameterized according 155 

to Yen (1981) and Pringle et al. (2007).  In addition to this scheme, we incorporated into HIGHTSI the snow density schemes 

E1, E2, and E3 (Table 1) as well as the MOSAiC data-based prescribed snow density to investigate how the different snow 

density schemes affect the thermal regime of snow and sea ice. The meteorological parameters, including wind speed (V), air 

temperature (Ta), relative humidity (Rh), precipitation (P), as well as shortwave (Qs) and longwave (Ql) radiative fluxes from 

the ERA5 reanalysis along drift trajectory of MOSAiC CO (Leg 1-3) were used as forcing data for the HIGHTSI model (Fig. 160 

S1). The model parameters are based on in situ observations and literature values and are listed in Table S1. To compare the 

observations and model results, we pre-processed the time series of snow density and used a time-dependent snow density for 

each model run. This was derived either based on the 10-day moving average from in situ snow density observations or on the 

snow density parameterization schemes, outlined in Table 1. 

3 Results 165 

Quality control was applied to the snow density data. Based on prior observational data analyses (Sturm et al., 2002), snow 

density values exceeding 700 kg/m³ across the entire dataset, as well as those surpassing 500 kg/m³ from October to May, were 

excluded. 
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3.1 MOSAiC statistics of observed snow density 

For the whole MOSAiC observation period, the observed surface snow density samples revealed a large variability, ranging 170 

from 82 to 498 kg/m³, with a mean and a standard deviation of 311 kg/m³ ± 94 kg/m3. The bulk snow density samples varied 

from 83 to 690 kg/m³, with a mean and a standard deviation 291 ± 106 kg/m3.  

Figure 3 presents the frequency distribution of both bulk snow density and surface snow density for the entire MOSAiC 

observation period and for the winter-spring period (October to May). For the whole MOSAiC period, 272 snow bulk 

measurements obtained from SWE and snow depth observations and 209 snow density measurements of the top 3 cm layer 175 

collected using a cutter were available for reference. 197 snow bulk density measurements and 89 surface snow density 

measurements were collected during the winter-spring period. In the uppermost 3 cm layer, the snow density during the winter-

spring period ranged from 82 to 432 kg/m³, with an average of 282 kg/m³, and the standard deviation was 77 kg/m³. 

For the winter-spring period, the frequency distribution of surface snow density shows two main peaks around 250 and 300 

kg/m³ (Fig. 3a). Fresh snow density may vary over a broad range, typically from 100 to 350 kg/m³ (Roebber et al., 2003).  Both 180 

peaks fall within this range, suggesting that fresh snow is an important component of the surface snow distribution. However, 

the observed surface snow density may also be influenced by environmental factors such as wind compaction and temperature-

induced snow metamorphosis. After snowfall, surface snow undergoes densification due to wind-induced compaction and 

temperature-driven metamorphism, During the freezing period, the wind exerts a strong effect on the surface snow layer, 

leading to the formation of wind slab snow (Seligman, 1936). Wind slab density typically varies from 350 kg/m³ to 500 kg/m³ 185 

(Derksen et al., 2014; Domine et al., 2007). The peak corresponding to the highest snow density (around 300 kg/m³) is below 

this range (Fig. 3a). This could be due to the effect of topography on the snowdrift accumulation patterns, which caused spatial 

heterogeneity in the densification process. 

The distribution of surface snow density throughout the entire observation period (blue line in Fig. 3a) resembles that observed 

during the winter-spring period. However, the peaks are far less pronounced, and the distribution includes a much higher 190 

frequency of large snow densities, due to the dominant presence of SSL during the melting period. In fact, summer SSL 

observations cover approximately half of the surface snow density observations (Fig 4e). A similar double-peak surface snow 

density distribution was also observed in snow on the Greenland ice sheet (Fausto et al., 2018), supporting the hypothesis that 

the processes driving the density distribution (precipitation, topography, wind-induced snowdrift and snow packing) are not 

regionally confined but are common in cold, windy environments where snowfall events and wind-induced snow drift 195 

frequently occur. 

The bulk snow density shows a right-skewed unimodal distribution, with the median snow density during MOSAiC around 

250 kg/m³ (Fig. 3b). Most bulk snow density values are centered around 250 kg/m³, in line with the primary bulk snow density 

applied in typical snow schemes. Additionally, the snow depth and various metamorphic processes affect the bulk snow 

density, whose impact increases over time as the snowpack evolves. 200 

https://doi.org/10.5194/egusphere-2025-1164
Preprint. Discussion started: 3 April 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

 

Figure 3: Frequency (%) distribution of surface snow density (a) and bulk snow density (b). The blue and orange colors represent 

the density distribution for the entire MOSAiC period and the winter-spring period, respectively. The mean snow density and sample 

numbers are provided in the plot. Density bins of 21 kg/m³ and 32 kg/m³ are used in (a) and (b), respectively. 

3.2 Snow density evolution over the annual cycle 205 

The time series of observed surface snow density (ρsfc), bulk snow density (ρb), air temperature, and wind speed, snow depth 

and sampling distribution are shown in Fig. 4. According to the annual cycle of air temperature, we can categorize four periods: 

The cold season (defined as Stage I) starts from the beginning of the observations and lasts until 18 February. During this 

period the mean air temperature is -25 ℃. The freezing period (Stage II) starts from 19 February to 10 May. Within this period 

the air temperature increases from -40 ℃ to -10 ℃. The melting period (Stage III) is from 13 June until the end of August 210 

with a mean air temperature of 0.1 ℃. The cooling season (Stage IV) starts from 2 September and lasts until the end of the ice 

camp (20 September). During this period, the mean air temperature was -3.1 ℃. 
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Figure 4: Time series of (a) observed snow density (kg/m3) for surface snow (red) and bulk snow (black), (b) observed air temperature 

(˚C) at 2 m height, and (c) wind speed (m/s) at 10 m height. The colored horizontal bars in (b) represent the four stages (red: I; green: 215 
II; blue: III; and black: IV). The bottom-colored bars in (c) refer to the MOSAiC legs 1 - 5. (d) Time series of snow depth: black 

dots represent observations from snow pits, and the light blue line indicates measurements from the weather tower. (e) Distribution 

of the number of observations for bulk snow (black bars) and surface snow (red bars). 

During Stage I, both surface and bulk snow densities range between 150 and 400 kg/m³, with mean values of 252 kg/m³ for 

surface snow density and 247 kg/m³ for bulk snow density. In Stage II, the rise in air temperature affects the surface snow 220 

density, resulting in higher surface snow density compared to bulk density. Stage III is characterized by substantial ice melting. 

The preferential melting of ice crystal boundaries produces the SSL (Smith et al., 2022), a porous, snow-like layer where the 

density increases with depth (Macfarlane et al., 2023b). The SSL is less dense than the sea ice from which it is generated, but 

it is much denser than snow. The meltwater drains to melt ponds and leads, leaving the SSL relatively dry. As the top SSL 

layer melts, there is a simultaneous transformation of the underlying bare ice to the SSL. Thus, the thickness of the SSL remains 225 

stable throughout the summer (Macfarlane et al., 2023b). During Stage IV, air temperatures drop below 0°C. This phase is 

marked by the refreezing of melt ponds and the onset of new snowfall, signalizing the beginning of a winter season. The 

snowpack/SSL undergoes significant restructuring as it transitions from a melting phase to a refreezing one, laying the 

foundation for the subsequent accumulation period. The average wind speed during the study period was 5.9 m/s, with the 

highest and lowest wind speeds recorded at 13.8 m/s and 1.3 m/s, respectively. The snow depth exhibited significant 230 
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temporospatial variations and localized features (based on tower measurements). The mean snow depth observed during 

MOSAiC was 0.16 m, with the thickest and thinnest snow depths measuring 0.49 m and 0.05 m, respectively. Snow sampling 

during the MOSAiC expedition was not evenly distributed in time (Fig. 4e, Fig. S2) due to logistical challenges (Itkin et al., 

2024). This impacted the snow depth and density distributions, which does not include the end of the snow melting stage and 

represents some snow stages (such as SSL in July-September) more than others. 235 

 

Figure 5: Simultaneous surface and bulk snow densities extracted from data samples (Fig. 4) during the four stages. The asterisks 

indicate the mean snow densities (Stage I: ρsfc =252 kg/m3, ρb = 247 kg/m3; Stage II: ρsfc =319 kg/m3, ρb = 280 kg/m3; Stage III: ρsfc 

=384 kg/m3, ρb = 503 kg/m3, and Stage IV: ρsfc =271 kg/m3, ρb = 316 kg/m3). The ellipse shadings represent bivariate Gaussian ellipses 

in terms of the 95% confidence intervals for each stage. Bar plots on the top and right side depict the absolute frequency (counts) of 240 
the observed surface snow density and bulk snow density. 

Figure 5 illustrates the relationship between bulk snow density and surface snow density across four temperature-based stages 

(I-IV). The bulk and surface snow density samples are collected simultaneously for comparsion. The scatter plot displays 

stage-specific distributions, with ellipses representing correlation patterns. Marginal histograms provide the corresponding 
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frequency distributions. In Stage I and Stage II, a positive relationship exists between bulk and surface snow densities. The 245 

ellipse for Stage II is the most flattened, indicating the strongest correlation, whereas Stage I exhibits a weaker correlation with 

a less flattened ellipse. The slope of the major axis is less than 1, suggesting that surface snow density varies more than bulk 

density. Frequency distributions reveal that bulk snow density is more concentrated, indicating greater uniformity in deeper 

snow layers. In Stage IV, the ellipse is more circular, and the slope exceeds 1, indicating that bulk snow density varies more 

than surface snow density. The frequency distribution shows a broader spread in bulk density, reflecting greater heterogeneity 250 

within the snowpack as internal processes dominate. Stage III demonstrates the weakest correlation, with a nearly circular 

ellipse and a negative slope, indicating the more independent relationship between bulk and surface densities. This weak 

relationship suggests that different processes are influencing the surface and bulk snow densities at this stage. 

 

Figure 6: Normalized mean snow density profiles during each stage. The mean snow depths were 0.15 m, 0.18 m, 0.15 m, and 0.06 255 
in Stage I, II, II and IV, respectively. 

The normalized mean vertical profile of snow density is shown in Fig. 6. The measurements were obtained using a snow cutter. 

Normalization was necessary because the snow depths at each snow pit differed from one another. During Stage I, the mean 

snow density gradually increases with depth, rising from 265 kg/m³ at the surface to 310 kg/m³ at the bottom. This is probably 

because at the bottom of the snowpack, the high-density SSL, formed during the melting, remains buried under the new snow 260 

during the freeze-up. The snow layers right above the SSL deposited in autumn, in temperature regimes that were warmer than 

in late winter and, thus, favored denser, more metamorphosed snow compared to the overlying snow layers. During Stage II, 

the density distribution reversed compared to Stage I. The snow density gradually decreases with depth, from 310 kg/m3 at the 
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surface layer to 270 kg/m3 at the snow/ice interface. The increase in surface snow density during Stage II can be attributed to 

wind compaction (Leeuw et al., 2023), while the decrease in snow density at the snow/ice interface resulted from the 265 

metamorphism of the SSL crystals into larger and looser depth hoar crystals (King et al., 2020). At the end of April, episodic 

surface melting occurred in association to warm-air intrusions (Fig. 4b), and the refreezing of percolated meltwater explains 

the density maxima below the surface layer and at an intermediate depth layer. It is evident that the SSL during the ice melting 

Stage III is denser than the snow present in the other stages. The SSL density is highest at the ice-SSL interface, where new 

SSL forms by disaggregation of the sea-ice structure due to melting, and is lowest at the surface, where the SSL melting is 270 

more pronounced. During the sea-ice refreezing in Stage IV, the density profile includes the SSL at the bottom and successively 

accumulated snow layers on the top. Hence, the density profile shows a linear increase with depth, similar to the vertical profile 

in Stage I. As a result, the observed snow density at each vertical level exhibits distinct spatial variability (Fig. S3).  

For the whole MOSAiC expedition, surface snow/SSL density varied between 82 and 498 kg/m³, while the snow/SSL density 

at the bottom of the snowpack exhibited an even broader range, from 102 to 690 kg/m³. The fluctuations were larger at the 275 

bottom, because the dataset includes the highly dense SSL samples of the early stage of the ice-to-snow transformation process 

occurring close to the ice-SSL interface. 

3.3 Impact of wind on snow density 

Wind can impact snow density via different mechanisms. On one hand, wind can compact the snowpack, which results in a 

higher snow density; on the other hand, strong enough wind results in drifting or blowing snow, generating large spatial 280 

variations in snow depth, which also impact snow density. Linear regressions were calculated to quantify the wind compaction 

of snow.  The cumulative wind speed is the sum of daily mean wind speeds (in m/s) over a cumulative number of days, 

analogously to temperature in degree-days. Particular attention was paid to the sensitivity of the regression coefficients to the 

accumulation time window. 
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Figure 7: (a) Regression coefficients for the dependence of surface (red) and bulk (black) snow density on accumulated wind speed, 

with accumulation time windows ranging from 3 to 30 days. All regression coefficients are statistically significant at the 95% 

confidence level. (b) Dependence of surface and bulk snow density on accumulated wind speed during the previous 3 days, with 

coefficients statistically significant at the 99% confidence level. 290 

The regression coefficient for surface snow density decreased from 2.34 at a 3-day accumulation period to 0.59 at a 30-day 

period (Fig. 7a). The shape of the curves in Fig. 7a indicates that the sensitivity of surface snow density to cumulative wind 

speed is highest over shorter periods (an example is shown for 3-days in Fig. 7b) but declines rapidly as the accumulation 

period increases. For bulk snow density, the coefficients were consistently smaller than for the surface snow density, ranging 

from 1.39 for a 3-day accumulation period to 0.16 for 30-days period (Fig. 7a). This is as expected, as the air-snow momentum 295 

flux can most efficiently deform the snow crystals at the surface of the snowpack. The decrease of the coefficients with 

increasing accumulation time may be interpreted as follows: after a snowfall event, the wind can initially induce strong 

deformation of the snow crystals. However, once the weakest crystal structures are broken, the rate of deformation slows down. 

Also, over increasing accumulation periods, other environmental and snowpack processes may start to dominate the wind’s 

influence. For shorter periods (within one month), all the regression coefficients for the surface and bulk snow densities are 300 

statistically significant at the 95% confidence level. In the case of surface snow density, the regression coefficients level out 

approximately at a 15-day accumulation period (Fig. 7a). 

3.4 Evaluation of snow density parameterizations 

The analyzed snow density characteristics were used to evaluate four different parameterization schemes (see Section 2.3; 

Table 1). We focus on data from legs 1-3 (October-May) when the meteorological parameters were observed along a 305 

continuous ice drift trajectory. As already mentioned, the observed snow density shows a high variability throughout the 

season, ranging from under 100 kg/m³ up to close to 500 kg/m³ (Fig. 4), which can be attributed to both the snow densification 

processes and differences in the spatial distribution. 

Snow density scheme E1, which considers both snow depth and the number of winter days (DOY) as influencing factors, 

shows a gradual increase in snow density over time (Fig. 8). The simulated values agree with the observed densities in the 310 

lower to mid-range. However, scheme E1 struggles to represent the response of density to large changes in snow depth. For 

instance, the effects of heavy snowfall events in November and February (visible in Fig. 4d) by short-term rapid increases in 

snow depth), as seen in the observed bulk density changes (Fig. 4a and 8), are not reflected in the E1 parameterization. 

Consequently, E1 produces overly smooth snow density evolution, missing the pronounced effects of snowfall events.  

In comparison, scheme E2, which considers the effects of snow depth, positive degree days, and wind speed days, reproduces 315 

density changes in response to snow depth changes in November and February. However, E2 consistently overestimates the 

bulk snow density relative to the observations.  

Scheme E3, which depends on snow depth, temperature, accumulated positive degree-days, minimum air temperature, and 

precipitation, accounts for both mechanical and thermodynamic processes that influence snow structure and density. However, 

in November, E3 shows an excessively strong increase in snow density compared to the observations, and it simulates a too 320 
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slow increase of snow density until March. This indicates that, in E3, snow depth plays a crucial role in controlling snow 

density early in the season, but other factors, such as the duration of winter, may become more influential later in the season.  

The snow density scheme E4 is the most complex one out of the four schemes evaluated here, and it is widely used in the sea 

ice research community (e.g., Essery et al., 2013). The scheme uses a prognostic equation that considers factors such as 

compaction due to overlying snow layers and metamorphic processes driven by temperature gradients. The initial snow density 325 

needs to be specified depending on the application. Here we select three categories of initial snow density to represent fresh 

new snow (150 kg/m³), intermediate snow (250 kg/m³) and average snow on Arctic sea ice (320 kg/m³) (King et al., 2020). 

The E4 simulations highlight the strong impact of initial snow density on snowpack evolution, especially early in the season. 

The lowest initial snow density results in the lowest predicted snow density throughout the season and provides a lower-bound 

estimate for snow density. It agrees with the observed lower values of density, especially early in Stage I. The intermediate 330 

initial condition gives a moderate estimate of snow density, generally following the observed evolution, but staying below the 

highest observed density values. Those can only be simulated with the highest initial density values. Although there is an 

obvious difference between the three different initial snow densities (range of 170 kg/m3), the final difference in density at the 

end of the winter is relatively small (in the order of 15 to 20 kg/m3).  

All parameterization schemes reproduce the observed increase of the bulk snow density over the winter, but none of them 335 

match the observed data throughout the season. In particular, all schemes fail in reproducing the observed decrease of the snow 

density in April and May. 
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Figure 8: Temporal evolution of 10-day moving average bulk (black) and surface (orange) snow densities, along with their standard 

deviations (dark and light shaded areas for bulk and surface densities, respectively), as well as the time series of four snow density 340 
parameterization schemes E1-E4 (colored lines). E4 (magenta lines) was initialized with three different densities (150 kg/m³, 250 

kg/m³, and 320 kg/m³). All simulations are for the winter-spring period (from October to May), covering stages I (red line at the 

bottom) and II (blue line at the bottom). 

Table 2: Root-mean-squared error (RMSE), mean absolute error (MAE), and mean bias between observed and parameterized (E1-

E4) daily mean bulk snow density. 345 

 Daily mean bulk snow density (kg/m³) 

 E1 E2 E3 E4 (150) E4 (250) E4 (320) 

RMSE  39 75 31 33 55 96 

MAE  29 72 25 24 51 94 

Mean bias  22 72 9 9 51 93 

 

The root-mean-squared error (RMSE), mean absolute error (MAE), and mean bias of the parameterized daily mean snow 

densities are presented in Table 2. All parameterizations (E1-E4) have a positive mean bias of calculated bulk snow density 

compared to the observations.  E2 and E4(320) exhibit the largest RMSE and MAE compared with the observations. E1 and 

E3 show lower RMSE and MAE, suggesting improved performance in capturing the observed snow density evolution 350 
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compared to E2. It is important to note that the comparison with observations is based on the daily mean bulk snow density, 

which may obscure some of the dynamic aspects of the snow density evolution, such as the spatially heterogeneous snow 

compaction and redistribution driven by the interaction between wind and surface roughness. Daily averaging may reduce the 

short-term variability in snow density data and diminish the ability to capture short-term changes and localized events within 

the snowpack. The results of the E4 scheme highlight the importance of the snowpack conditions at the beginning of the season. 355 

The initial snow density significantly influences the evolution of the snowpack. The lowest RMSE and MAE are obtained with 

an initial snow density of 150 kg/m³. None of the snow density schemes can capture the short-term temporal variability of the 

observed snow density. 

3.5 Model experiments 

3.5.1 Impact of snow density on sea ice 360 

Here, we incorporate a time series of MOSAiC surface (ρsfc) and bulk (ρb) snow density, along with snow density schemes 

(E1–E4), into the HIGHTSI model to investigate how the selection of snow density scheme affects the thermal regime of snow 

and sea ice (refers as modelling group 1). The time series of ρsfc and ρb are presented as 10-day moving averages with temporal 

standard deviations (Fig. 8). For E1-E3 simulations, we applied the initial snow density of 250 kg/m3. The E4 simulations, 

which use specified initial snow densities (as described in the previous section), are labeled as E4(150), E4(250), and E4(320), 365 

respectively. The modeled mean temperatures of the snow surface (Tsfc), snow layer (Tsnow), and ice layer (Tice), as well as 

the mean ice thickness (Hice) during the simulation period (from 1 October 2019 to 31 May 2020), are presented in relation 

to the mean snow density (Ds) used in each modeling experiment (Table 3). For comparison, we performed another group of 

model experiments (refers as modelling group 2) using constant snow density values of 180, 200, 220, 250, 270, 300, and 320 

kg/m3. 370 

The mean ρsfc is 24 kg/m3 larger than ρb. The mean standard deviations of ρsfc and ρb are 47 kg/m3 and 28 kg/m3, respectively. 

The mean bulk snow density (ρb) of the E1-E4 simulations is 294 kg/m3 with a standard deviation of 41 kg/m3. The Ds values 

calculated applying E1, E3, E4(150) and E4(250) fall within the ρsfc observation range [231-325 kg/m3], with the E1 yielding 

the closest match to the observed mean ρsfc (279 vs. 278 kg/m3). On the other hand, the Ds calculated applying E1, E3, and 

E4(150) fall within the ρb observation range [226-282 kg/m3], with the E4(150) scheme yielding the closest match to the 375 

observed mean ρb (265 vs. 254 kg/m3). 

Table 3: The mean snow density (Ds) and modeled mean values of surface temperature (Tsfc), snow temperature (Tsnow), ice 

temperature (Tice), and ice thickness (Hice) using the 10-day moving average of observed surface (ρsfc) and bulk (ρb) snow density, 

as well as snow density schemes E1–E4 with different initial snow densities. All values represent averages for the period from October 

to May. The ± values indicate the results incorporating the standard deviations of ρsfc and ρb, respectively. 380 

Mean values during 

simulation period 

ρsfc ρb E1 E2 E3 E4 (with different initial snow 

density kg/m3) 

10-day moving average ρ0 = 250 kg/m3 E4(150) E4(250) E4(320) 

https://doi.org/10.5194/egusphere-2025-1164
Preprint. Discussion started: 3 April 2025
c© Author(s) 2025. CC BY 4.0 License.



19 

 

Ds (kg/m3) 278 ± 47 254 ± 28 279   329   239   265   305   347 

Tsfc (°C) -24.6±0.03 -24.6 ±0.03  -24.8   -24.7   -24.9   -24.6   -24.6   -24.5 

Tsnow (°C) -18.0± 0.4 -17.8 ± 0.3 -16.6 -17.2 -16.1 -17.8 -18.2 -18.6 

Tice (°C) -7.3± 0.4 -7.0 ± 0.2 -5.9 -6.5 -5.5 -7.1 -7.4 -7.8 

Hice (m) 1.08 ± 0.4    1.05 ± 0.03     0.87 0.97     0.80     1.06     1.10     1.16 

In response to the Ds range of 226–347 kg/m³, the modeled mean surface temperature fluctuated by 0.4°C, showing a weak 

dependence on the applied snow density scheme (Fig. 9a). The corresponding Tsnow and Tice exhibited ranges of 

approximately 2.5°C and 2.3°C, respectively, showing a stronger response to snow density compared to the snow surface 

temperature (note the different vertical axes in Fig. 9a, b, and c). The modeled mean ice thickness (Hice) was 1.01 ± 0.12 m, 

with a variation range of 0.36 m. Different snow density schemes resulted in variations in the modeled ice thickness, with a 385 

standard deviation of 0.12 m, representing approximately 12% of the modeled mean ice thickness. 

Linearity of Tsfc, Tsnow, Tice, and Hice with mean Ds is observed in two clusters of model experiments and observations 

(one cluster including E1, E2 and E3, and another cluster including mean ρsfc, mean ρb, and three E4s). The linearity indicates 

that the modeled Hice increases with increasing snow density, while the modeled Tsnow and Tice decrease with increasing 

snow density. A higher snow density results in higher thermal conductivity and volumetric heat capacity, enhancing the 390 

conductive heat flux and allowing more heat to be transferred toward the snow surface. This enhanced heat transfer, associated 

with higher snow density, also accounts for the thicker ice and slightly warmer surface temperature. It is noteworthy that the 

differences in the modeled Tsfc, Tsnow, Tice, and Hice may be attributed not merely to the differences in snow density alone, 

but also to other parameters associated with snow density, such as thermal conductivity and volumetric heat capacity. This is 

because HIGHTSI applies time-dependent snow thermal conductivity, parameterized as a function of snow density (Sturm et 395 

al., 1997). This may explain why the Ds values of the time series for ρsfc and E1 are nearly identical, while the calculated 

snow and ice variables differ (Table 3). When a constant snow density is applied in HIGHTSI, the linear relationship between 

snow density and the thermodynamic state of snow and ice becomes more pronounced and aligns with the snow density cluster 

(E1–E3) in modeling group 1. Tsfc and Hice increase linearly by 0.27°C and 0.23 m, respectively, while Tsnow and Tice 

decrease linearly by 1.48°C and 1.34°C, respectively, in response to an increase in snow density from 180 to 320 kg/m³ (“+” 400 

connected lines in Fig. 9).  
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Figure 9: Modelled (a) mean snow surface temperature (Tsfc), (b) averaged in-snow (Tsnow) and (c) in-ice (Tice) temperatures and 

(d) mean ice thickness (Hice) as a function of the mean snow density (Ds). The symbols presented in the picture represent results of 

modelling group1 using different snow density schemes (E3:○, ρb:□, E4(150):, ρsfc:, E1:, E4(250):☆, E2:× and E4(320):⁕). The 405 
“+” connected lines represent values obtained from modelling group 2 experiments applying constant snow density values of 180, 

200, 220, 250, 270, 300, and 320 kg/m3. 

3.5.2 Impact of precipitation on sea ice 

During the MOSAiC expedition (October-May), the measured snow water equivalent (SWE) showed large spatiotemporal 

differences (Matrosov et al., 2022). SWE measurements are a major proxy for snow accumulation in winter and spring and for 410 

ice-to-SSL transformation in summer. Winter and spring snow accumulation depends on precipitation and wind-forced snow 

redistribution. We made model sensitivity experiments to understand the impact of precipitation and wind-induced snow 

redistribution on snow and ice thermodynamic parameters in the winter-spring MOSAiC period applying the measured SWE 

in each month of the MOSAiC expedition from October to May. The SWE was measured by different types of sensors (see 

Matrosov et al., 2022; their Table 1). We used a constant snow density (330 kg/m3) to convert SWE to snow accumulation. 415 

This criterion was applied in previous studies (e.g., Huwald, et al., 2005). The bulk snow density ρb was determined by applying 

observed 10-day moving average (black dash line in Fig. 8). The model experiments were carried out in the same manner as 

in the case of snow density (ERA5 weather forcing, same model parameters, except that the observed SWE using different 

sensors were used as source for snow accumulation). The results are presented in Fig. 10. 
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 420 

Figure 10: Modelled (a) mean snow surface temperature (Tsfc), (b) averaged in-snow (Tsnow) and (c) in-ice (Tice) temperatures and 

(d) mean ice thickness (Hice) as a function of SWE (proxy for snow accumulation resulting from precipitation and wind-induced 

snow redistribution) for October-May. 

Table 4:  Modelled mean snow and ice thermodynamic parameters using observed SWE as model input for snow accumulation. P1-

P6 refers to the total snow accumulation observed by different sensors (Matrosov et al., 2022).  425 

  Run P1 Run P2 Run P3 Run P4 Run P5 Run P6 

SWE (mm) 96    81   160   218    53   108    

Tsfc (°C) -24.9   -24.9   -25.1   -24.9   -24.7   -24.9   

Tsnow (°C) -15.8   -16.1   -15.2   -15.6   -17.1   -15.7  

Tice(°C) -5.3 -5.6 -4.6 -5.0 -6.4 -5.1 

Hsnow (m) 0.30     0.25     0.43     0.54     0.16     0.34     

Hice(m) 0.76     0.81     0.64     0.71     0.96     0.73     

 

The modeled surface temperature is not sensitive to the uncertainty in total snow accumulation as shown by the small standard 

deviation (0.14 °C) between the mean temperatures obtained applying different sensors (Table 4). The standard deviation 

among the modeled mean in-snow and in-ice temperatures (0.8 °C and 0.7 °C, respectively) reveals that the modelled 

temperature response to uncertainties in SWE (snow accumulation) is similar to the modelled temperature response to the 430 

uncertainty in parameterized snow density (Table 3). The modelled Tsnow and Tice vary over a range of 2.1 °C each when 
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changing SWE (snow accumulation) forcing, similar to the Tsnow and Tice variations with respect to different snow density 

parameterizations.  Also, the model sensitivity of Hice to the applied SWE/snow accumulation (seen as a 0.13 m standard 

deviation of the means, Table 4) was similar to the sensitivity of Hice to the applied snow density parameterizations (Table 3). 

The modelled snow and ice temperatures as well as the snow and ice thicknesses show a nonlinear relationship to SWE during 435 

the modelling period. More snow accumulation leads to a thicker snowpack and a stronger insulation effect. As a result, the 

in-snow and in-ice temperatures increase, resulting in thinner ice. However, a major further increase in snow accumulation 

would reverse the above processes due to snow-to-ice transformation via surface flooding and resulting snow-ice formation 

(Saloranta, 2000). The response of the modelled parameters (Fig. 10) to increased SWE are opposite to their response to 

increased snow density. 440 

4 Discussion and conclusion 

The mean surface and bulk snow densities are comparable during stages I, II and IV, as the bulk snow density primarily reflects 

the cumulative effect of overlapping surface snow layers. However, during the melting season (III), the bulk snow density 

exceeds the surface snow density by 119 kg/m3. This discrepancy arises from processes characteristic of the melt period: 

intense surface melting and the downward percolation of meltwater reduce near-surface snow density, while the refreezing of 445 

meltwater at deeper layers increases density at those depths (Pirazzini et al., 2006; Vihma et al., 2011). In these deeper layers, 

density increases almost monotonically from the surface to the bottom. These findings underscore the significant influence of 

seasonal melting and refreezing processes on the vertical density structure of snow. 

In winter, wind contributes to the spatial snow depth and density heterogeneity through the interaction with the surface 

topography. At the MOSAiC Central Observatory, Itkin et al. (2023) demonstrated that the interaction of wind, drifting snow, 450 

and sea ice roughness explains up to 85% of the observed snow depth variability over both level and deformed ice. In the 

Canadian Arctic, Iacozza and Barber (1999) observed that the wind direction during depositional storm events impacts the 

distribution of snow dunes. In summer, as snow melts over the Arctic sea ice, a SSL develops during the melting process. This 

layer forms as a highly porous surface crust on the melting sea ice, resulting in a density that is greater than that of snow but 

lower than that of sea ice (Macfarlane et al., 2023c). During autumn, winter, and spring, rain-on-snow (ROS) events can lead 455 

to the formation of a hard ice crust layer on the snow surface (Rennert et al., 2009). During the MOSAiC campaign, few ROS 

events were observed, which triggered surface melting in April (Svensson et al., 2023) and September (Stroeve et al., 2022). 

This resulted in the densification of the snowpack (Stroeve et al., 2022). 

During winter-spring, the MOSAiC surface snow/SSL density shows two main peaks.  The one at lowest density likely resulted 

from occurrences of fresh snow and snowdrift accumulation on the leeward side of topographic protrusions. The one at highest 460 

density is probably associated with snow densification induced by wind compression on the windward side of topographic 

protrusions, and to snow metamorphism driven by the energy and moisture exchange with the atmosphere. The distribution of 

surface snow density during the entire MOSAiC period is less peaked and show a larger fraction of dense snow due to the 
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contribution of the summer SSL. A right-skewed unimodal distribution of the bulk snow density reflects the cumulative effect 

of multiple snow layers, influenced by surface deposition as well as by compaction, metamorphosis, and densification 465 

processes. The initial snow depth prior MOSAiC CO camp is important and has a significant role on the snow density 

distribution. Although there was heavy precipitation recorded in November and February (Matrosov et al., 2022), the 

cumulative seasonal snow accumulation was not large. Based on Koo et al., (2021), in the MOSAiC Central Distributed 

Network (DN) domain scale of about 50 km, the average initial snow depth was 16 cm. By the end of May, the net snow depth 

increased by approximately 5 cm, resulting in a ratio of snow depth accumulation to initial snow depth of about 0.3. 470 

The mean vertical profile of snow density exhibited distinct patterns at each stage. At different depths, the spatial variation of 

snow density is also large among sample sites. From a snow climatology perspective, snow accumulation and melting cycles 

play critical roles in shaping snow density profiles (Warren et al., 1999). Sea ice topography influences snow depth distribution, 

which can lead to heterogeneous snow density structures (Iacozza and Barber, 1999). Regional and temporal variations in 

snow depth are governed by the complex interplay between atmospheric forcing, sea ice dynamics, and snow accumulation 475 

processes (King et al., 2020; Itkin et al., 2023). Integrating these factors determines the evolution of snow density. 

Temporal variations in snow density were more pronounced than vertical variations. Both surface and bulk snow densities 

exhibited a non-monotonic increase during the winter and a decrease by the end of spring. The increase in snow density during 

winter aligns with Arctic snow climatology (Warren et al., 1999). However, the decrease in snow density during the melting 

in May is coherent to what has been observed also over Antarctic sea-ice (Nicolaus et al., 2009). Warren et al. (1999) concluded 480 

that the average Arctic snow density could reach 320 kg/m³ in May after autumn and winter settling and wind packing.  

The statistical analysis of snow density reveals that the sample mean (± std) surface and bulk snow densities observed over the 

entire MOSAiC period were 311 ± 94 kg/m³ and 291 ± 106 kg/m³, respectively. During the winter-spring period (October–

May), the mean (± std) surface and bulk snow densities were 282 ± 77 kg/m³ and 253 ± 59 kg/m³, respectively. The sample 

average surface (311 kg/m³) and bulk (291 kg/m³) snow densities are comparable to the Arctic snow density climatology 485 

reported by Warren et al. (1999), which ranges between 200 and 400 kg/m³. These values are also consistent with Canadian 

Arctic snow densities, which range from 250 to 350 kg/m³, indicating a long-term consistency in snow properties across the 

Arctic over decades. These values are also comparable to the mean snow density of about 339 kg/m³ observed over the 

Antarctic sea-ice (Massom et al., 2001), and specifically to the mean densities of 282 and 356 kg/m³ observed in the Weddell 

Sea over first-year and second-year ice, respectively (Nicolaus et al. 2009).  490 

Constant snow densities of 348 kg/m³ and 308 kg/m³ were derived from the linear regression of SWE versus snow depth for 

the entire MOSAiC period and the winter-spring period, respectively. Unlike the density sample statistics, these constant snow 

densities represent the overall physical relationship between SWE and snow depth, providing a first proxy for snow density in 

climate modeling. 

Finding a robust relationship between bulk snow density samples and air temperature using MOSAiC data remains challenging. 495 

Because snow density is affected by wind-driven compaction and wind interaction with surface topography. Snow melting 

causes simultaneous increases and decreases of density in different snow depths. In addition, snow sampling bias may occur 
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(Macfarlane et al., 2023a). Similar difficulties in observing a relationship between air temperature and snow density were 

reported in previous studies conducted in mountainous regions, in the terrestrial Arctic, and over the Greenland ice sheet (Zhao 

et al., 2023; Howat, 2022). On the other hand, air temperature has been shown to be positively correlated with the fresh snow 500 

density in previous studies (Sturm and Holmgren, 1998; Judson and Doesken, 2000). In case of dry snow, air temperature 

influences the evolution of snow density by the densification process, as it governs the vertical temperature gradients within 

the snowpack (Zhao et al., 2023). However, over a given period (stage), the impact of air temperature on snow density becomes 

evident. In Stage III, when temperatures approached 0°C, the mean SSL bulk density reached 503 kg/m³ showing an increasing 

density from the surface to the bottom of the SSL layer. This contrasts with the bulk snow density of 316 kg/m³ observed 505 

during other stages, when air temperatures were significantly colder. 

An accumulated wind speed exposure led to an increase in the surface and bulk snow density during stages I and II. The impact 

of accumulated wind on snow density was strongest, in terms of the regression coefficient, during the first days after a snowfall 

event. Even after that, the snow density continued to increase with increasing accumulated wind speed, but the slope of the 

regression decreased. Qualitatively similar relationships were detected in previous campaigns over the Arctic Ocean, 510 

Greenland, and the Tibetan Plateau (Zhao et al, 2022; 2023; Howat, 2022). Furthermore, the differential sensitivity of surface 

and bulk snow densities to accumulated wind speed underscores the importance of temporal scales when considering wind-

snow interactions. The effect of wind on surface snow density is more direct than the effect of wind to bulk snow density, 

which agrees with previous work (Meister, 1989; Sokratov and Sato, 2001; Walter et al., 2024). These findings suggest that 

future snow modeling efforts should carefully consider the timescale of wind forcing and its interplay with other environmental 515 

factors to accurately simulate snow density evolution. 

Snow density schemes simulated the gradual increase in snow density during the winter-spring period (Fig. 8). However, none 

of the snow density parameterizations adequately captured the observed temporal variability. They failed to reproduce the 

observed decrease in snow density in May. The temporal evolution of snow density influences the thermal conductivity and 

volumetric heat capacity of snow, which in turn affects the thermal inertia and mass balance of sea ice. Nevertheless, some 520 

results from the parameterization schemes (E1, E3, E4(150, 250)) fell within the range of the observed values and align with 

the snow density climatology of Warren et al. (1999), suggesting their general applicability for sea ice and climate models. On 

the other hand, snow density has strong spatial variability. King et al. (2020) observed that snow density is highest in thin 

snow layers over undeformed ice, while is lowest in thicker snow layers over older and deformed ice. Higher densities over 

thin snow layers are due to the stronger wind compaction over smooth ice, while thicker snow is less dense because of the 525 

loose depth hoar bottom. This is associated with the strongest metamorphism occurring when the thick snowpack better 

insulates the basal layer from the cold winter atmosphere (King et al 2020). Snow density parameterizations capable of 

addressing spatial variability are needed. Improvements could potentially be achieved through parameterizations based on the 

probability distribution function (PDF) of snow density (e.g., Liston et al., 2007). 

The modeled mean surface temperature (Tsfc), snow temperature (Tsnow), ice temperature (Tice), and ice thickness (Hice) 530 

exhibited linearity with mean snow density when applying snow density schemes E1, E2, and E3 with the same initial snow 
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density. Scheme E4, with different initial snow densities and time series of surface and bulk snow densities, produced another 

linear trend in these modeled parameters. The temperature and ice thickness differences originating from differences in 

modeled parameters reached 0.2 °C for Tsfc, 1.4 °C for Tsnow and Tice, and 0.21 m for Hice when applying snow density 

scheme E1 and ρsfc, despite having the same average snow density (symbols  and   in Fig. 9).  Snow density and temperature 535 

were inversely related: the higher the density, the lower the snow and ice temperatures. Higher snow density leads to a larger 

snow thermal conductivity, which enhances the heat transfer and increases the impact of the atmospheric forcing on the 

snowpack. The modelled surface temperature was much less impacted by the snow density. The model runs using a constant 

snow density showed strong linearity in the modeled snow and ice parameters as snow density increased. This linearity was 

consistent with that observed in schemes E1–E3. The temporospatial distribution of snow density has a strong connection with 540 

snow depth (Key et al., 2020). Additional model experiments revealed nonlinearity in the modeled snow and ice parameters 

in response to different observed snow water equivalent (SWE) values used as the source term for snow accumulation. By 

examining Fig. 9 and 10, we can conclude that the response of the modeled snow and ice parameters to the increase in SWE 

was opposite to their response to the increase in snow density. 

High-quality precipitation data could help understand the bulk snow density. The challenges of snowfall data lie largely in the 545 

uncertainties of instruments (Matrosov et al. 2022). In this paper, we limited our discussion to surface and bulk snow densities, 

since these are the primary parameterization options for climate models. For microscale snow density characteristics, more 

accurate datasets, such as those from SnowMicropen (SMP) and microCT, can be utilized (Macfarlane et al., 2023).  

In this study, modeling was conducted exclusively for the winter-spring period because HIGHTSI does not simulate the 

formation and growth of the surface scattering layer (SSL), which was observed during the MOSAiC melting season. The SSL 550 

is a common and widespread feature of Arctic sea ice during the melting season (Smith et al., 2022) and has recently been 

observed on an Antarctic ice shelf as well (Traversa et al., 2024). However, it is currently not represented in any existing sea 

ice models or is simulated merely as a persistent snow layer at the top of the ice surface (Smith et al., 2022). This omission or 

misrepresentation can potentially lead to significant errors in the ice surface energy and mass budgets. To fully understand the 

formation and melting of the SSL, as well as the associated erosion of the ice surface, a dedicated SSL modeling component 555 

should be developed. 
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